
CLIMATE-BIASED STORM-FREQUENCY ESTIMATION

By Thomas E. Croley II1

ABSTRACT: Storm frequencies for the future are often estimated directly from past historical records of suf-
ficient length. The estimation requires no detailed knowledge of the area’s meteorology, but presumes it is
unchanged in the future. However, the climate seldom remains static. Numerous climate forecasts of meteoro-
logical probabilities over extended periods are now available. It is possible to use these meteorological forecasts
directly in the estimation of storm frequencies from the historical record. A heuristic approach is defined here
to estimate storm frequencies that recognize forecasts of extended weather probabilities. Basically, those groups
of historical meteorological record segments matching forecast meteorological probabilities are weighted more
than others, during the estimation of storm frequencies. (Affiliated groups of hydrologic record segments may
be similarly weighted for hydrological estimation; e.g., flood frequency estimation.) An example of frequency
estimation is made for maximum annual daily flow, using currently available agency meteorological forecasts
in the United States and Canada.
INTRODUCTION

One of the important problems in hydrology deals with in-
terpreting a past record of events, in terms of probabilities of
occurrence, for the estimation of future behavior. Natural me-
teorological and hydrologic phenomena are variable but many
times amenable to probabilistic interpretation and estimation
analysis. Such interpretation requires that samples taken from
the historical record be representative, unbiased, and indepen-
dent. This direct estimation of event frequencies is simple and
seemingly reliable. It enables engineers to obtain estimates of
probabilities of events without detailed knowledge of the ap-
plication area meteorology or hydrology. It is also theoretically
satisfying since one is working with observations of real
events and not abstract process models. However, it requires
a statistically characteristic record and the assumption that the
past is representative of the future. This assumption is often
violated since climate varies.

Multiple long-lead forecasts of meteorological probabilities
are now available to the water resource engineer and hydrol-
ogist and are reviewed elsewhere (Croley 1996, 1997b,
2000a). These forecasts are defined for different time scales
and time periods at different lag times, spatial domains, event
definitions, and meteorological variables, and they forecast ei-
ther meteorological event probabilities or only most-probable
meteorological events. Now, it is possible to estimate mete-
orological and hydrologic frequencies from the historical rec-
ord by using these forecasts. (Various ‘‘storm’’ frequencies are
considered here.) Such estimates embody all ‘‘meteorological
uncertainty’’ inherent in both the record and in the forecasts.

Basically, those groups of meteorological segments from the
historical record matching forecast meteorological probabili-
ties are given more weight than those not matching, when
estimating storm frequencies. The historical meteorological
record is thus used in a nonrepresentative and biased manner
to match meteorological forecasts; therefore, the requirements
are removed for representative and unbiased records and meth-
odology. Still, the methodology requires that the historical rec-
ord contain an adequate range of independent possibilities.

The present paper first summarizes the methodology for es-
timation of storm frequencies from the historical record. Then,
storm frequency estimates are modified to reflect available
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forecasts of meteorological probabilities. The adaptation is
based on techniques used in operational hydrology approaches
to transform forecasts of meteorological probabilities into
forecasts of hydrologic probabilities (Croley 1996, 1997a,b,
2000a). Next, a comparison is made with a Bayesian frame-
work, more flexible objectives are incorporated into the solu-
tion, and linear programming techniques are modified to elim-
inate infeasible meteorological probability forecasts. Finally,
an example frequency estimate is made for annual maximum
daily flow. It makes use of forecasts of meteorological prob-
abilities, and includes agency forecasts in the United States
and Canada.

STORM FREQUENCY ESTIMATION

Since storm frequencies are unknown, they are estimated
from the historical record, assumed ergodic and treated as a
‘‘random sample,’’ wherein successive observations, (X1, X2,
. . . , Xn), are considered identically distributed and equally
likely to occur (both in the past and future). (For example, X
may represent the annual maximum daily precipitation or the
annual maximum flood flow.) Likewise, the observations must
be defined so they can be considered as independent of each
other. (For example, two successive storms occurring very
closely may result in a high degree of dependence of the sec-
ond on the first.) Temporal dependence can be minimized by
defining long event interarrival times or record pieces. For
example, annual maximum floods or rainfalls (interarrival time
on the order of a year) are often taken as time independent,
as are one-year record segments. Spatial independence must
also be assured when multiple application areas are to be con-
sidered simultaneously. In practical parlance, the observation
values, x1, . . . , xn, of X1, X2, . . . , Xn, respectively, sometimes
are called a random sample also.

Storm frequencies or ‘‘exceedance probabilities,’’ P[X $ x]
can be estimated directly from the historical record. Suppose
all values, xi, in a random sample of annual maximums (xi, i
= 1, . . . , n) are ordered from largest to smallest to define the
ordered variable values (yl, l = 1, . . . , n), where yl = andxi(l)

i(l) is the number of the value in the unordered sample cor-
responding to the lth order. There are several methods to es-
timate exceedance probabilities from annual exceedance series
(Chow 1964); without loss of generality, the popular ‘‘Wei-
bull’’ method is used here as an example

l
P̂[X $ y ] = , l = 1, . . . , n (1)l

n 1 1

The caret (ˆ) denotes an estimate of the characteristic named
under the caret. (Other methods also could be used.) Rewrit-
ing (1)
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l
1

P̂[X $ y ] = 1, l = 1, . . . , n (2)l On 1 1 i = 1

If the values in the random sample are annual extremes, as are
the storm frequencies considered here, then the ‘‘recurrence
interval’’ or ‘‘return period’’ is defined as the average number
of years during which an event may be expected to occur once.
It is computed as the reciprocal of the exceedance probability.

This estimator is called ‘‘nonparametric’’ since knowledge
of the underlying distribution and its parameters is not re-
quired. Other estimators (called ‘‘parametric’’) derive from
knowledge (or supposition) of the type of underlying distri-
bution. Functions of a random sample may be used as esti-
mators of the parameters of the underlying distribution. Sev-
eral of interest here are the ‘‘sample mean,’’ , ‘‘samplem̂
variance,’’ , and ‘‘sample skew coefficient,’’2 ˆŝ c

n
1

m̂ = x (3a)iOn i = 1

n
12 2ŝ = (x 2 m̂) (3b)iOn 2 1 i = 1

n
n 3 2 3ĉ = (x 2 m̂) /( ŝ ) (3c)ÏiO(n 2 1)(n 2 2) i = 1

They are estimators of distribution mean, m; variance, s2; and
skew coefficient, c, respectively. Other estimators (Koutrou-
velis and Canavos 1999) also could be used with no loss of
generality.

EXAMPLE STORM FREQUENCIES

The daily flow records of the Maumee River at Waterville,
Ohio (basin area = 16,390 km2) were assembled and searched
over 1948–1995 and the annual maximum daily flows are
given in Table 1. The exceedance frequencies for the annual
maximum flows were estimated with (2) and plotted in Fig. 1.
The log-Pearson Type III distribution also was fit to the data
set of Table 1. This distribution results from supposing the
natural logarithms of the data in Table 1 [Z = ln(X)] are dis-
tributed as a three-parameter gamma distribution

a21
1 z 2 c c # z < ` (b > 0)2(z2c)/bf (z) = e , (4)Z S D 2` < z # c (b < 0)ub uG(a) b

where fZ(z) = (/z)P[Z # z]; G(a) = gamma function; and a,
b, and c = distribution parameters. Estimates of the parameters
are given in terms of (3) defined on the natural logarithms of
the data (USWRC 1967), by replacing expected values with
sample moments

2ˆâ = (2/c) (5a)

2ˆ ˆb = ŝ c/2 (5b)Ï
2 ˆĉ = m̂ 2 2 ŝ /c (5c)Ï

The estimated log-Pearson Type III distribution is shown also
in Fig. 1. See Koutrouvelis and Canavos (1999) for other pa-
rameter estimators.

MATCHING A PROBABILITY FORECAST

The probability of any event A, P[A], can be inferred with
the estimator, P̂[A], defined as the number of observations in
the random sample for which A occurs (i.e., for which the
event A is true), nA, divided by the total number of observa-
tions in the sample, n
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TABLE 1. Annual Maximum Daily Maumee River Flow at
Waterville, Ohio (Latitude 41:30:00, Longitude 83:42:46; Basin Area =
16,390 km2)

Year
Flow

(m3 s21)

1949 1280
1950 2620
1951 1500
1952 1500
1953 940
1954 663
1955 1300
1956 1210
1957 1770
1958 841
1959 2270
1960 1270
1961 1520
1962 1300
1963 1000
1964 1330
1965 1030
1966 2240
1967 1380
1968 1610
1969 1910
1970 943
1971 1100
1972 1330
1973 1130
1974 1970
1975 1400
1976 1940
1977 1810
1978 2450
1979 1510
1980 1260
1981 2420
1982 3200
1983 1530
1984 1450
1985 2580
1986 1030
1987 666
1988 649
1989 1210
1990 2320
1991 2460
1992 1530
1993 1840
1994 1810
1995 1440

FIG. 1. Annual Maximum Daily Maumee River Flow Exceedance Fre-
quency, Made in September 1999 for Period of September 1999–August
2000



n 1A
P̂[A] = = 1 (6)On n i u A

In (6), the count (sum) is taken over all i (members of the
random sample) for which A occurs. The estimator in (6) is
recognized as the ‘‘relative frequency’’ of A in the random
sample. Other estimators, such as the one in the Weibull
method, P̂[A] = nA /(n 1 1), do not have all of the properties
associated with probability measures (Pfeiffer 1965) and can-
not be used in the following derivations. However, (6) does,
and derivations with (6) will behave as probabilities.

A forecast associates a probability with a value, reflecting
the anticipated likelihood of an event defined in terms of that
value. Given an event A for which a probability forecast is
desired and an event Ak for which others have forecast a prob-
ability (P[Ak]), what is the forecast probability of A? By the
theorem of total probability (Pfeiffer 1965)

C CP[A] = P[A uA ]P[A ] 1 P[A uA ]P[A ] (7)k k k k

If estimates of the conditional probabilities, P[A uAk] and
, are taken from the historical record, then knowingCP[A uA ]k

P[Ak] (and = 1 2 P[Ak]) from others’ forecasts enablesCP[A ]k

estimation of the forecast probability of A by (7). Eq. (7) can
be written in terms of probability estimates; by using the def-
inition of conditional probability

P[A uA ] = P[AA ]/P[A ] (8)k k k

and by replacing with sample counts, nA [number of scenarios
in the sample for which event A occurs, as in (6)]

Cn nAA AAk k Cˆ ˆ ˆP[A] = P[A ] 1 P[A ] (9a)k k
Cn nA Ak k

1 1 Cˆ ˆ ˆP[A] = P[A ] 1 P[A ] (9b)k kO O
CCn nA Ai u AA i u AAk kk k

1
P̂[A] = w (9c)iOn i u A

where

n ˆw = P[A ] ; i uA (10a)i k k
nAk

n C Cˆw = P[A ] ; i uA (10b)i k k
CnAk

BAYESIAN COMPARISON

Note that in the example of (7)–(10), while P̂[A uAk] and
are unchanged from the historical record estimates,CP̂[A uA ]k

P̂[A] and (of course) P̂[Ak] are changed from the historical
record estimates of (6), reflecting the biasing of the sample to
match the forecast of P[Ak]. Furthermore, one can easily show
that P̂[AAk] and P̂[Ak uA] are also changed from the historical
record estimates. This reveals an important distinction between
the Bayesian statistic approach (Pfeiffer 1965) for estimation
of conditional probabilities and the biased-sampling approach
used here. In the Bayesian approach, the probability of an
event A, conditioned on the occurrence of an event Ak (called
‘‘a posterior,’’ P[A uAk]) is estimated from an unconditional
probability (a priori, P[A]), a ‘‘likelihood’’ function (P[Ak uA]),
both estimated from the record, and an experimental obser-
vation (in this case a forecast, P[Ak]). In terms of estimators,
the Bayes theorem is

ˆ ˆP[A]P[A uA]k
P̂[A uA ] = (11)k

P̂[A ]k
JO
In the biased sample approach used here, one estimates new
joint probabilities (for A and Ak) that preserve observed con-
ditional probabilities (P[A uAk] and , conditioned onCP[A uA ])k

a key event Ak while matching that key event (forecast) prob-
ability P[Ak]. The theorem of total probability allows one to
calculate a new probability for the event of interest (A) as in
(7). Thus, the biased sample procedure uses conditional prob-
abilities observed in the record rather than estimating them
anew from forecasts of selected meteorological events. It es-
timates the probability of the event of interest from a new joint
distribution that also matches the meteorological event fore-
cast.

MATCHING MULTIPLE PROBABILITY FORECASTS

Croley (1996, 1997b, 2000a) biased samples, by multiplying
sample observations by nonnegative weights, wi, to calculate
probabilities of any event A, as in (9), but where the weights
are determined from matching others’ multiple probability
forecasts of events. These other probability forecasts are read
from agency forecast maps for a point of interest. Croley
(1996, 1997b, 2000a) reviews the basis for a variety of these
forecasts and how to read the maps; he also derives El ˜Nina
forecast probabilities for an application area (Croley 2000a).
Note from (9), for A selected so that P̂[A] = 1

n

w = n (12)iO
i = 1

Consider, for example, that forecasts of event probability can
be interpreted in m 2 1 probability equations (Croley 1996)
and forecasts of most-probable events can be interpreted in p
1 q probability inequalities (Croley 1997b). They are ex-
pressed in terms of relative frequencies over a random sample
as follows:

P̂[A ] = a , k = 2, . . . , m (13a)k k

P̂[A ] < a , k = m 1 1, . . . , m 1 p (13b)k k

P̂[A ] # a , k = m 1 p 1 1, . . . , m 1 p 1 q (13c)k k

where ak = forecast probabilities. Croley (2000a) illustrates
how to interpret agency forecast probability maps to yield
probability statements in one of the forms in (13). For now,
replace the ‘‘strictly less than’’ inequalities in (13) with ‘‘less
than or equal to’’ inequalities

P̂[A ] = a , k = 2, . . . , m (14a)k k

P̂[A ] # a , k = m 1 1, . . . , m 1 u (14b)k k

where u = p 1 q. Writing the forecasts of meteorological prob-
abilities of (14) in terms of weights, as in (9), and adding to
(12), yields a system of equations to be solved for the weights

n

w = n (15a)iO
i = 1

w = na , k = 2, . . . , m (15b)i kO
i u Ak

w # na , k = m 1 1, . . . , m 1 u (15c)i kO
i u Ak

Equivalently

n

a w = e , k = 1, . . . , m (16a)k,i i kO
i = 1

n

a w # e , k = m 1 1, . . . , m 1 u (16b)k,i i kO
i = 1
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where = 1 for k = 1 or for k ≠ 1 and i uAk [inclusion of theak,i

ith random sample value (ith event or segment of the historical
record) in the event of the kth probability statement]; otherwise
it is zero. Also, ek = n for k = 1 and ek = nak for k > 1. Any
set of weights that satisfies (16) yields weighted-sample rela-
tive frequencies of events that match forecasts of meteorolog-
ical probabilities. These weights can also be used to yield other
corresponding biased sample estimators; e.g., (2) and (3) be-
come, for nonzero weights

l
1

P̂[X > y ] = w , l = 1, . . . , n (17a)l i(k)On 1 1 k = 1

n
1

m̂ = w x (17b)i iOn i = 1

n
12 2ŝ = w (x 2 m̂) (17c)i iOn 2 1 i = 1

n
n 3 2 3ĉ = w (x 2 m̂) /( ŝ ) (17d )Ïi iO(n 2 1)(n 2 2) i = 1

Observations (xi) corresponding to zero-valued weights are un-
used and the smaller sample size (d ) replaces n in statistics
such as (17). The weights are multiplied by d/n to sum to the
smaller sample size as in (12).

This method of using observations from the historical record
is similar to Extended Streamflow Prediction (ESP) method-
ology (Day 1985; Ingram et al. 1995; Smith et al. 1992). In
ESP, meteorological observations from the historical record
(time series segments) are transformed with hydrology models
to yield a sample of possible ‘‘futures’’ that can then be de-
scribed probabilistically. Croley (1996, 1997b, 2000a) de-
scribes how to bias this sample, to reflect weather forecasts,
in this ESP approach (operational hydrology). Here, single ob-
servations from the historical record of either meteorology or
hydrology (annual maximums instead of time series segments)
are used directly (no model transformation) to estimate a sim-
ple exceedance probability distribution, which is then biased
to reflect climatic forecasts.

Generally, some of the equations in (15) or (16) may be
either redundant or infeasible (nonintersecting with the rest,
resulting in no solutions) and must be eliminated. (If the num-
ber of equations is greater than the number of weights, then
some of the equations must be either redundant or infeasible.)
In practice, one could assign each equation in (15) or (16) a
priority reflecting its importance. The highest priority is given
to (15a) or (16a) corresponding to (12), guaranteeing that all
relative frequencies sum to unity. Each equation (starting with
the second highest priority equation) is compared to the set of
all higher-priority equations and eliminated if redundant or in-
feasible. Thus (16) can always be reduced so that the allowed
number of forecasts of meteorological probabilities is less than
or equal to the number of historical record pieces (sample
size). If less, then there are multiple solutions to (16), and a
choice must be made as to which solution to use.

OPTIMUM SOLUTION

If there are multiple solutions to (16), the identification of
the best requires a measure or objective function for compar-
ing them. Solutions of (16) with larger values of this measure
can be judged better than those with smaller values. One such
measure is the probability of a selected event. Consider an
example: (14) allows probabilities equal to ak for k = m 1 1,
. . . , m 1 p, while (13) requires them strictly smaller. One can
use an objective function to minimize a probability to keep it
under its limit (instead of equal to it). Likewise, one can use
an objective function to maximize a probability (increase it
above a limit) as in the following:
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ˆmax P[T > t̂ ] subject to (18a)Sep Sep,0.5

P̂[T > t̂ ] $ 0.5 (18b)Sep Sep,0.5

P̂[T # t̂ ] # 0.5 (18c)Sep Sep,0.5

where TSep = September air temperature; and is the g-t̂Sep,g

quantile for September air temperature estimated from a ref-
erence historical period (usually 1961–1990 or 1963–1993)
such that

P̂[T # t̂ ] = g (19)Sep Sep,g

This allows us to work only with less-than-or-equal-to in-
equalities instead of strictly-less-than inequalities, or with
greater-than-or-equal-to inequalities instead of strictly-greater-
than inequalities. Therefore, the replacement of (13) with (14)
is still useful. Also, consider the example

ˆˆ ˆmax(P[T # t̂ ] 1 P[Q > u ]) subject to (20a)Sep Sep,0.333 Sep Sep,0.667

P̂[T # t̂ ] $ 0.333 (20b)Sep Sep,0.333

P̂[t̂ < T # t̂ ] # 0.334 (20c)Sep,0.333 Sep Sep,0.667

P̂[T > t̂ ] # 0.333 (20d )Sep Sep,0.667

ˆP̂[Q # u ] # 0.333 (20e)Sep Sep,0.333

ˆ ˆP̂[u < Q # u ] # 0.334 (20 f )Sep,0.333 Sep Sep,0.667

ˆP̂[Q > u ] $ 0.333 (20g)Sep Sep,0.667

where September precipitation, QSep, and its quantiles, ,ûSep,g

are defined similarly to (19). The optimization of (18) satisfies
a most-probable event forecast for above-normal September
air temperature by maximizing the associated probability. The
optimization of (20) attempts to satisfy two most-probable
September event forecasts (one for below-normal air temper-
ature and one for above-normal precipitation) by maximizing
a sum of associated probabilities.

The objective function formulation can be used to express
many different goals, besides the two in (18a) and (20a) for
giving extreme probabilities that match meteorological fore-
casts. Another example expresses the goal of retreating from
high temperatures beyond the near term

ˆmin{P[T > t̂ ]} subject to (21a)Dec Dec,0.667

P̂[T # t̂ ] = 0.233 (21b)Sep Sep,0.333

P̂[T > t̂ ] = 0.433 (21c)Sep Sep,0.667

If the objective function is always a statement of maximiz-
ing or minimizing a probability, as in the examples of (18a),
(20a), and (21a), then it can be added to the problem statement
of (16) to yield an optimization problem solvable with a stan-
dard optimization technique. In particular, the objective func-
tion formulations of (18a), (20a), and (21a) can be expressed
in terms of weights by matching relative frequencies in the
sample of historical record segments, as was done to replace
(12) and (14) with (15) by using (9). The reformulation of the
objective functions of (18a), (20a), and (21a) become, respec-
tively

1
max w (22)iF O Gn i u (t ) > t̂Sep i Sep,0.5

1 1
max w 1 w (23)i iF O O Gn ni u (t ) # t̂ ˆi u (q ) > uSep i Sep,0.333 Sep i Sep,0.667

1
max w (24)iF O Gn i u not[(t ) > t̂ ]Dec i Dec,0.667



where (tj)i and (qj)i are period j air temperature and precipi-
tation sample observations i.

Each example, from (22)–(24), can in turn be equivalently
expressed in the general form

n

max a w (25)0,i iO
i = 1

where are defined similarly to (16) in which the objectivea0,i

function corresponds to k = 0. The problem of solving (16)
can now be formulated as an optimization, maximizing the
objective function subject to a ‘‘constraint set’’ of equations

n

max a w subject to (26a)0,i iO
i = 1

n

a w = e , k = 1, . . . , m (26b)k,i i kO
i = 1

n

a w # e , k = m 1 1, . . . , m 1 u (26c)k,i i kO
i = 1

w $ 0, i = 1, . . . , n (26d )i

LINEAR PROGRAMMING

Eqs. (26) are amenable to standard linear programming op-
timization techniques. An existing algebraic procedure, termed
the Simplex method, has been developed that progressively
approaches the optimum solution through a well-defined iter-
ative process until optimality is finally reached; Hillier and
Lieberman (1969) provide an explanation of the Simplex
method and details of its use. The following is not an account
of the Simplex method, but of an adaptation of it in face of
potentially infeasible solutions and the need to further restrict
allowable equations to allow feasible solutions. Prior to ap-
plication of the Simplex method, the equations and inequalities
in (26) are transformed into an equivalent two-stage problem.
First, (26) may be written all in terms of inequalities,

n

max a w subject to (27a)0,i iO
i = 1

n

a w # e , k = 1, . . . , m (27b)k,i i kO
i = 1

n

a w $ e , k = 1, . . . , m (27c)k,i i kO
i = 1

n

a w # e , k = m 1 1, . . . , m 1 u (27d )k,i i kO
i = 1

w $ 0, i = 1, . . . , n (27e)i

where the equalities in (26b) have been replaced (equivalently)
with two sets of inequalities in (27b) and (27c). The solution
to (27) is identical to that of (26). Furthermore, the greater-
than-or-equal-to inequalities in (27c) can be summed into a
single equation without changing the solution

n

max a w subject to (28a)0,i iO
i = 1

n

a w # e , k = 1, . . . , m 1 u (28b)k,i i kO
i = 1

m n m

a w $ e (28c)k,i i kOO O
k = 1 i = 1 k = 1
J

w $ 0, i = 1, . . . , n (28d )i

Then, (28) can be written as equalities by adding ‘‘slack’’ var-
iables

n

max a w subject to (29a)0,i iO
i = 1

n

a w 1 w = e , k = 1, . . . , m 1 u (29b)k,i i n1k kO
i = 1

m n m

a w 2 w = e (29c)k,i i n1m1u11 kOO O
k = 1 i = 1 k = 1

w $ 0, i = 1, . . . , n 1 m 1 u 1 1 (29d )i

where wi, (i = n 1 1, . . . , n 1 m 1 u 1 1) are nonnegative
slack variables. The reason that equalities in (26) were first
eliminated and then restored is so that a slack variable is in-
troduced for every equation. These slack variables enable an
initial solution (set of values for wi, i = 1, . . . , n 1 m 1 u 1
1 that satisfies the constraints) if one exists, from which to
begin the Simplex search for the optimum. An initial solution
can be obtained from an optimization similar to (29)

max 2 v subject to (30a)

n

a w 1 w = e , k = 1, . . . , m 1 u (30b)k,i i n1k kO
i = 1

m n m

a w 2 w 1 v = e (30c)k,i i n1m1u11 kOO O
k = 1 i = 1 k = 1

w $ 0, i = 1, . . . , n 1 m 1 u 1 1 (30d )i

v $ 0 (30e)

where v = ‘‘artificial’’ variable introduced as a computational
device. The maximization of 2v corresponds to the minimi-
zation of v. If the minimum occurs at v = 0, then the solution
to (30) is feasible in (29), and the Simplex search [as described
by Hillier and Lieberman (1969)] can begin in (29) from this
solution. If the minimum v is not zero, or no feasible solution
to (30) exists, then there is no feasible solution to (29). This
means the constraint set must be changed by eliminating the
lowest-priority equation or inequality in (26) and its corre-
sponding member in (29) and (30). This cycle of optimization
of (30) and elimination of the lowest-priority equation is re-
peated until a feasible solution is found to the problem of (30);
i.e., the artificial variable in (30) equals zero. At this point, the
Simplex method is applied to (29) from the solution of (30).
Croley (2000a) describes the procedure in more detail. Fig. 2
depicts the algorithm of the entire linear programming opti-
mization and successive elimination of infeasible equations.

NOAA and EC FORECAST EXAMPLE

The estimates of Fig. 1 are modified by incorporating se-
lected forecasts from the National Oceanic and Atmospheric
Administration (NOAA) event probability forecasts and En-
vironment Canada (EC) most-probable event forecasts (Croley
1996, 1997b, 2000a). The forecasts are summarized in Table
2, in a priority order where the earliest-made forecasts are
placed first (the earlier NOAA event-probability equations pre-
cede the later EC most-probable event inequalities), precipi-
tation outlooks precede temperature, and shorter-lagged out-
looks precede longer-lagged. Note that the precipitation
forecasts in Table 2 are for high precipitation with only one
exception (the EC September-October-November, or SON,
forecast). The objective in matching these forecasts is therefore
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FIG. 2. Determining Physically Relevant Weights through Linear Programming
arbitrarily taken here as maximizing the probability that pre-
cipitation over the period November 1999–July 2000 will be
in the upper third of its historical range (determined from
1961–1990).

ˆˆmax P[Q > u ] (31)Nov’99–Jul’00 Nov–Jul,0.667

The daily meteorological data over the entire Maumee River
basin were assembled to determine the average air temperature
and precipitation, for the periods shown in Table 2 and (31);
only average daily precipitation for the October-November-
December (OND) and November–July periods are presented
here and given in Table 3. According to the agencies, the
NOAA temperature and precipitation forecasts and the EC pre-
cipitation forecasts are defined relative to historical reference
quantiles estimated over 1961–1990. Likewise, the EC tem-
perature forecasts are defined relative to historical reference
quantiles estimated over 1963–1993. By ordering data from
these periods, the reference quantiles are estimated; example
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values are given only for OND and November–July precipi-
tation in Table 4 as derived from the data in Table 3.

Suppose now that a hydrologist has acquired, in September
1999, the forecasts of Table 2 and wishes to make an estimate
of storm frequencies (annual maximum Maumee River flows)
at that time for the coming winter and following spring and
summer (September 1999–August 2000). He or she would
consider each of the possibilities in Table 1 as a possibility
for this period. (The Maumee River annual maximum flow
typically occurs as spring snowmelt.) The objective function
of (31) and the forecasts of Table 2 would apply prior and
through the beginning of each year in the sample, so that the
time lag accounts for the meteorology driving the hydrology.
In other words, each year of record is to be weighted to reflect
the objective of (31) and the beginning winter as forecast in
Table 2 (a total period from September of the year before
through the following August). For example, the first value in
Table 1 for 1949 corresponds to the objective and forecast
values for September 1948–August 1949. The coefficients in



TABLE 2. Mixed NOAA and EC Probabilistic Meteorological
Forecasts Made in September 1999 over Maumee River Basin

No. Equation

1 = 0.283ˆP̂[Q # u ]OND’99 OND,0.333

2 = 0.383ˆP̂[Q > u ]OND’99 OND,0.667

3 = 0.273ˆP̂[Q # u ]NDJ’99 NDJ,0.333

4 = 0.393ˆP̂[Q > u ]NDJ’99 NDJ,0.667

5 = 0.273ˆP̂[Q # u ]DJF’99 DJF,0.333

6 = 0.393ˆP̂[Q > u ]DJF’99 DJF,0.667

7 ˆP̂[Q # u ] = 0.133JFM’00 JFM,0.333

8 = 0.533ˆP̂[Q > u ]JFM’00 JFM,0.667

9 ˆP̂[Q # u ] = 0.273FMA’00 FMA,0.333

10 = 0.393ˆP̂[Q > u ]FMA’00 FMA,0.667

11 = 0.273ˆP̂[Q # u ]MAM’00 MAM,0.333

12 = 0.393ˆP̂[Q > u ]MAM’00 MAM,0.667

13 = 0.333P̂[T # t̂ ]OND’99 OND,0.333

14 = 0.333P̂[T > t̂ ]OND’99 OND,0.667

15 = 0.333P̂[T # t̂ ]NDJ’99 NDJ,0.333

16 = 0.333P̂[T > t̂ ]NDJ’99 NDJ,0.667

17 = 0.273P̂[T # t̂ ]DJF’99 DJF,0.333

18 = 0.393P̂[T > t̂ ]DJF’99 DJF,0.667

19 = 0.263P̂[T # t̂ ]JFM’00 JFM,0.333

20 = 0.403P̂[T > t̂ ]JFM’00 JFM,0.667

21 = 0.333P̂[T # t̂ ]FMA’00 FMA,0.333

22 = 0.333P̂[T > t̂ ]FMA’00 FMA,0.667

23 = 0.333P̂[T # t̂ ]MAM’00 MAM,0.333

24 = 0.333P̂[T > t̂ ]MAM’00 MAM,0.667

25 # 0.333ˆP̂[Q # u ]SON’99 SON,0.333

26 ˆ ˆP̂[u < Q # u ] $ 0.334SON,0.333 SON’99 SON,0.667

27 # 0.333ˆP̂[Q > u ]SON’99 SON,0.667

28 # 0.333ˆP̂[Q # u ]JJA’00 JJA,0.333

29 ˆ ˆP̂[u < Q # u ] # 0.334JJA,0.333 JJA’00 JJA,0.667

30 $ 0.333ˆP̂[Q > u ]JJA’00 JJA,0.667

31 # 0.333P̂[T # t̂ ]SON’99 SON,0.333

32 # 0.334P̂[t̂ < T # t̂ ]SON,0.333 SON’99 SON,0.667

33 $ 0.333P̂[T > t̂ ]SON’99 SON,0.667

34 # 0.333P̂[T # t̂ ]DJF’99 DJF,0.333

35 # 0.334P̂[t̂ < T # t̂ ]DJF,0.333 DJF’99 DJF,0.667

36 $ 0.333P̂[T > t̂ ]DJF’99 DJF,0.667

37 $ 0.333P̂[T # t̂ ]JJA’00 JJA,0.333

38 # 0.334P̂[t̂ < T # t̂ ]JJA,0.333 JJA’00 JJA,0.667

39 # 0.333P̂[T > t̂ ]JJA’00 JJA,0.667

(26), , have values of 1 or 0 corresponding to the inclusionak,i

or exclusion, respectively, of each variable in the sets indicated
in the variable subscripts in (31) and Table 2. For (31), the
reader can see from inspection of the third column in Table 3
that the relation, > (or > 2.62 mm;ˆq u qNov–Jul Nov–Jul,0.667 Nov–Jul

see the third column in Table 4) is satisfied by the following
indices: 1 (corresponding to 1948), 2, 3, 4, 11, 19, 20, 21, 25,
27, 32, 35, 38, 41, 42, and 45 (corresponding to 1992). Index
19 (corresponding to 1966) does not appear to satisfy this re-
lation because of round-off error, but in fact does. Thus, (31)
would be written, similar to (26a), as

max(w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w1 2 3 4 11 19 20 21 25

1 w 1 w 1 w 1 w 1 w 1 w 1 w )27 32 35 38 41 42 45 (32)

Expressing (32) in vector form,

max[11110000001000000011100010100001001001001100100]w (33)

where w = column vector of the weights. Similarly, the reader
can see from inspection of Tables 3 and 4 that (12) and the
first two equations in Table 2 become the vector equations
[11111111111111111111111111111111111111111111111]w = 47 (34a)
JO
TABLE 3. Average Maumee River Basin Daily Precipitation (mm)

Year OND November–July

1948 2.52 2.88
1949 2.03 3.24
1950 2.87 2.91
1951 2.86 2.82
1952 1.49 2.15
1953 0.96 2.29
1954 2.90 2.15
1955 2.61 2.49
1956 1.31 2.60
1957 2.84 2.53
1958 1.50 2.67
1959 2.74 2.34
1960 1.10 2.39
1961 1.58 1.98
1962 1.25 1.88
1963 0.86 2.24
1964 1.06 2.30
1965 2.42 2.00
1966 3.14 2.62
1967 3.38 2.81
1968 2.33 2.77
1969 2.01 2.49
1970 1.85 2.11
1971 2.13 2.48
1972 2.67 2.94
1973 2.58 2.43
1974 1.96 2.63
1975 2.10 2.51
1976 1.02 1.98
1977 2.28 2.37
1978 1.98 2.45
1979 2.46 2.71
1980 1.34 2.56
1981 2.04 2.46
1982 2.84 2.65
1983 3.81 2.62
1984 2.31 2.38
1985 3.17 3.00
1986 2.09 1.92
1987 2.27 1.71
1988 2.64 2.65
1989 1.50 2.81
1990 3.53 2.41
1991 2.55 2.51
1992 2.71 2.88
1993 1.85 2.10
1994 1.89 2.39

[00001100101011111000001000101010100000000100011]w

= 0.283 3 47 (34b)

[10110011010100000011000011000001001101001011100]w

= 0.383 3 47 (34c)

Likewise, the remainder of the equations in Table 2 can be
combined with inspection of the average air temperature and
precipitation data and quantiles, not shown here, and used with
(33) and (34) to construct the entire optimization problem
statement equivalent of (26)

max[a a ? ? ? a ] w subject to0,1 0,2 0,47

[a a ? ? ? a ] w = e1,1 1,2 1,47 1

[a a ? ? ? a ] w = e2,1 2,2 2,47 2
? ?? ?? ?

[a a ? ? ? a ] w = e25,1 25,2 25,47 25

[a a ? ? ? a ] w # e26,1 26,2 26,47 26

[a a ? ? ? a ] w # e27,1 27,2 27,47 27
? ?? ?? ?

[a a ? ? ? a ] w # e (35)40,1 40,2 40,47 40

Note that the values of ak,i and ek for the first four lines of
(35) are given in (33) and (34). In the ensuing optimization
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TABLE 4. Historical Average Daily Precipitation Reference
Quantiles (mm)

Quantilea

Period, i

OND November–July

ûi,0.333 1.98 2.37
ûi,0.667 2.42 2.62

aQuantiles based on the period 1961–1990.

of (35) (free software is available over the web from http://
www.glerl.noaa.gov/wr/outlookweights.html), 19 weights are
zeroes, indicating that some of the historical record is not used.
However, all but the last three equations in Table 2 and (35)
are used [all forecasts except the EC most-probable June-July-
August (JJA) air temperature forecast].

Climate-biased storm frequencies for the annual maximum
daily flow can now be estimated by applying these weights to
the data in Table 1 by using (17). Only results for the fitted
log-Pearson Type III distribution are given in Fig. 1. Compare
the log-Pearson Type III distribution derived from the para-
metric estimates without the forecasts to that made with the
forecasts, in Fig. 1. There is a large shift, making all flows
more likely to be exceeded.

The complete example, represented only partially here in
(33), (34), and (35), is given by Croley (2000b) with all sup-
porting information. In addition, Croley (2000b) also gives one
other fully documented example of this type for ‘‘water year’’
annual maximum Maumee River flow exceedance frequencies.
He also gives two other fully documented examples for annual
maximum precipitation exceedance frequencies, which utilize
specially derived El and La probability forecasts˜ ˜Nino Nina
for the Maumee River basin, along with background for the
derivations.

MULTIPLE SOLUTIONS

In the optimization of (26), all expressions are linear, in-
cluding the objective function [(26a)]. This allows a linear
programming optimization technique to be used as compared
to earlier formulations (Croley 1996, 1997b). Those used the
minimization of the sum of squared differences of each weight
with unity, ( (wi 2 1)2, and employed classical differential
calculus solutions for zero slope of the Lagrangian. The linear
formulation proves superior in its ability to include alternative
objectives (expressed as maximization of selected event prob-
abilities).

Also, the formulation of (26) allows nonnegativity con-
straints on the weights to be explicitly included. This means
that all solutions can be searched. The earlier formulations of
Croley (1996, 1997b) lacked explicit inclusion of nonnegativ-
ity constraints for the weights. There, optimum solutions were
considered and discarded (along with lowest-priority con-
straints) if nonnegativity constraints were unsatisfied. But that
also discarded the many other possibilities that, while not op-
timum, might satisfy all constraints.

There is a trade-off however. Multiple optima solutions are
now a possibility that did not exist before. In the search al-
gorithms employed in the linear programming solutions, these
multiple optima can be detected (that is, the existence of more
than a single optimum can be discerned) but the systematic
exploration of them can be extensive. These multiple optima
(while infinite in extent) can always be described as weighted
combinations of a finite number of solution points. In practical
terms, there are three limitations to the search for multiple
optima: computation storage (or computer memory extent),
computation time, and the growth of numerical error. The first
two are easily appreciated. As multiple solution points are dis-
covered, they must be saved and compared to subsequent so-
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lution points to avoid repeating their discovery. The searching
and comparisons also can take a great amount of time, de-
pending upon the number of solution points. Numerical error
is unavoidable on the computer and, while it can be mini-
mized, can cause error growth. The linear programming al-
gorithm involves a systematic search from one point in the
constraint space to another, and an error in calculating one
point can induce errors in the subsequent. While this appears
manageable in most practical applications for finding the first
solution point, it appears sometimes not to be manageable for
finding a large number of additional solution points when mul-
tiple optima are present. In fact, in many such problems, error
growth can limit searches for other optima more than computer
memory or time constraints.

Since the linear programming solution of (26) may not be
able to identify all multiple optima (solution points), the prac-
titioner is faced with an interesting choice. He or she can either
limit the number of optimum solution points returned by the
optimization to the first few, or formulate the problem (choose
an objective) so that the optimum is unique. In the first alter-
native, all optima are not generally found, so that other pos-
sibilities exist uninvestigated. Maybe some of these other pos-
sibilities would have been preferable (as determined from
considerations outside of the problem as formulated), but re-
main unknown. In the second alternative, the practitioner may
be facing the dilemma of electing not to solve the problem at
hand, but instead (re)formulating the problem so that its so-
lution behaves in a certain way. While this is a practical con-
sideration, it is theoretically unappealing. Changing the prob-
lem so that it is solvable in a certain manner is not the same
as solving the original problem. Nevertheless, there are many
alternative, yet practical, problem formulations of interest and
the dilemma is not further addressed here.

SUMMARY AND OBSERVATIONS

The methodology described herein allows one to recognize
changing climate in the estimation of storm frequencies, re-
moving one of the worst assumptions associated with this,
which is that future probabilities are the same as the past.
Existing forecasts of meteorological probabilities as well as
other conditional probabilities [e.g., based on El or La˜Nino

events, see Croley (2000a,b)] can be used to bias storm˜Nina
frequency estimates for a changing climate. The methodology
is adapted from earlier work that uses forecasts of meteoro-
logical probabilities to derive forecasts of consequent hydro-
logic probabilities in an operational hydrology approach, sim-
ilar to ESP. Here, a linear objective function is used in the
search for a solution, enabling both the incorporation of an
event probability in the objective, and the use of existing linear
programming optimization techniques. Because of the possi-
bility of multiple optimums and more than one way to consider
them, the practitioner is faced with an interesting choice. Ei-
ther the problem can be reformulated (changing the objective
probability statement or the forecast probabilities or order) to
find an unique optimum, or the search can be restricted to the
first few optima found.

The example presented here may be more representative of
storm frequency estimation in an operational setting rather
than in a design setting. Climate-biased storm frequencies
were estimated, in effect, conditioned on meteorological fore-
casts. These conditions are current and are not generally re-
garded as applying over a very long time into the future. The
resulting biased storm frequencies can only be considered ap-
plicable over the same time period as the meteorological fore-
casts used to condition them. The examples given here applied
over the next several months are appropriate for use in an
operational setting. If probabilities can be defined (estimated)
corresponding to climate shifts expected from the present for-



ward, then the resulting biased storm frequencies could be
used in a design setting.

While the example presented here is for annual maximum
daily flow rates, other frequency estimation problems can be
similarly addressed. These include derivation of complete du-
ration-area-intensity curves for precipitation, and annual min-
imum extreme events. In the latter case, estimation would be
for the cumulative distribution function (probabilities of being
less than or equal to given levels) rather than for exceedance
frequencies; but they are handled similarly. Complete soft-
ware, in the form of an easy-to-use interactive Windows
graphical user interface, and all worked examples are available
free of charge over the World Wide Web. The software, ex-
amples (including additional El and La exercises),˜ ˜Nino Nina
and tutorial materials may be acquired in a self-installing file
by visiting and downloading from the web site, http://www.
glerl.noaa.gov/wr/outlookweights.html.
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NOTATION

The following symbols are used in this paper:

A = event label;
Ak = event label for kth event;
JOU
ak = probability in kth equation in set of forecasts of mete-
orological probabilities;

c = location parameter for three-parameter gamma distribu-
tion;

ĉ = sample estimate of c;
ek = value of kth equation in set, equivalent to forecast of

meteorological probability;
fZ(z) = probability density function for three-parameter gamma

distribution;
i(l) = number of value in unordered random sample corre-

sponding to lth order;
l = order of a value in sample of size n, ordered from largest

(1) to smallest (n);
m = number of meteorological forecast equalities plus one;
n = number of random variables or observations in random

sample (size of sample);
nA = number of random sample observations for which A oc-

curs (i.e., for which A is true);
P[?] = probability of event in brackets, representing its likeli-

hood;
P̂[?] = relative frequency in sample, of event in brackets, used

to estimate probability;
p = number of most-probable meteorological event ‘‘strictly-

less-than’’ inequalities;
Qj = total precipitation over period j;
q = number of most-probable meteorological event ‘‘less-

than-or-equal-to’’ inequalities;
(qj)i = value of Qj in observation i of random sample;

Tj = average air temperature over period j;
(tj)i = value of Tj in observation i of random sample;

u = number of most-probable meteorological event inequali-
ties;

v = ‘‘artificial’’ variable in Phase I of Simplex method for
optimization;

w = column vector of weights, wi; i = 1, . . . , n;
wi = weight applied to ith random sample observation;
Xi = ith random variable in random sample;
xi = ith observation in random sample (value of Xi);
yl = lth ordered value, from largest to smallest, for variable X

in random sample;
Z = random variable, defined as natural logarithm of random

variable X;
a = shape parameter for three-parameter gamma distribution;
â = sample estimate of a;

ak,i = integer coefficient equal to unity (1) for k = 1 or for k ≠
1 when ith random sample value (ith event or segment
of historical record) is included in event of kth probabil-
ity statement, and zero (0) otherwise;

b = scale parameter for three-parameter gamma distribution;
b̂ = sample estimate of b;

G(a) = gamma function (= dx);` 2x a21* e x0

m = population mean, defining central location of distribution;
m̂ = sample mean, used as sample estimate of m;

ûj ,g = reference total precipitation g-probability quantile esti-
mate for period j;

s2 = population variance, defining spread of distribution about
its central location;

2ŝ = sample variance, used as sample estimate of s2;
t̂j,g = reference average air temperature g-probability quantile

estimate for period j;
c = population skew coefficient, used to define asymmetry of

distribution; and
ĉ = sample skew coefficient, used as sample estimate of c.
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